Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Comp Neurol ; 528(11): 1805-1819, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31872441

RESUMO

A wide range of evidence indicates that olfactory perception is strongly involved in food intake. However, the polysynaptic circuitry linking the brain areas involved in feeding behavior to the olfactory regions is not well known. The aim of this article was to examine such circuits. Thus, we described, using hodological tools such as transsynaptic viruses (PRV152) transported in a retrograde manner, the long-distance indirect projections (two to three synapses) onto the main olfactory bulb (MOB). The ß-subunit of the cholera toxin which is a monosynaptic retrograde tracer was used as a control to be able to differentiate between direct and indirect projections. Our tracing experiments showed that the arcuate nucleus of the hypothalamus, as a major site for regulation of food intake, sends only very indirect projections onto the MOB. Indirect projections to MOB also originate from the solitary nucleus which is involved in energy homeostasis. Other indirect projections have been evidenced in areas of the reward circuit such as VTA and accumbens nucleus. In contrast, direct projections to the MOB arise from melanin-concentrating hormone and orexin neurons in the lateral hypothalamus. Functional significances of these projections are discussed in relation to the role of food odors in feeding and reward-related behavior.


Assuntos
Comportamento Alimentar/fisiologia , Bulbo Olfatório/citologia , Bulbo Olfatório/fisiologia , Condutos Olfatórios/citologia , Condutos Olfatórios/fisiologia , Animais , Corantes Fluorescentes , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência/métodos
2.
Diabetes ; 66(2): 314-324, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27899482

RESUMO

The mediobasal hypothalamus (MBH) contains neurons capable of directly detecting metabolic signals such as glucose to control energy homeostasis. Among them, glucose-excited (GE) neurons increase their electrical activity when glucose rises. In view of previous work, we hypothesized that transient receptor potential canonical type 3 (TRPC3) channels are involved in hypothalamic glucose detection and the control of energy homeostasis. To investigate the role of TRPC3, we used constitutive and conditional TRPC3-deficient mouse models. Hypothalamic glucose detection was studied in vivo by measuring food intake and insulin secretion in response to increased brain glucose level. The role of TRPC3 in GE neuron response to glucose was studied by using in vitro calcium imaging on freshly dissociated MBH neurons. We found that whole-body and MBH TRPC3-deficient mice have increased body weight and food intake. The anorectic effect of intracerebroventricular glucose and the insulin secretory response to intracarotid glucose injection are blunted in TRPC3-deficient mice. TRPC3 loss of function or pharmacological inhibition blunts calcium responses to glucose in MBH neurons in vitro. Together, the results demonstrate that TRPC3 channels are required for the response to glucose of MBH GE neurons and the central effect of glucose on insulin secretion and food intake.


Assuntos
Peso Corporal/genética , Ingestão de Alimentos/genética , Metabolismo Energético/genética , Glucose/metabolismo , Hipotálamo/metabolismo , Insulina/metabolismo , Neurônios/metabolismo , Canais de Cátion TRPC/genética , Animais , Western Blotting , Jejum , Teste de Tolerância a Glucose , Homeostase , Hipotálamo/citologia , Secreção de Insulina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Canais de Cátion TRPC/metabolismo
3.
Mol Metab ; 3(6): 619-29, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25161885

RESUMO

Overfeeding causes rapid synaptic remodeling in hypothalamus feeding circuits. Polysialylation of cell surface molecules is a key step in this neuronal rewiring and allows normalization of food intake. Here we examined the role of hypothalamic polysialylation in the long-term maintenance of body weight, and deciphered the molecular sequence underlying its nutritional regulation. We found that upon high fat diet (HFD), reduced hypothalamic polysialylation exacerbated the diet-induced obese phenotype in mice. Upon HFD, the histone acetyltransferase MOF was rapidly recruited on the St8sia4 polysialyltransferase-encoding gene. Mof silencing in the mediobasal hypothalamus of adult mice prevented activation of the St8sia4 gene transcription, reduced polysialylation, altered the acute homeostatic feeding response to HFD and increased the body weight gain. These findings indicate that impaired hypothalamic polysialylation contribute to the development of obesity, and establish a role for MOF in the brain control of energy balance.

4.
J Neurosci ; 34(33): 10884-91, 2014 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-25122890

RESUMO

Salt is a fundamental nutrient that is required for many physiological processes, including electrolyte homeostasis and neuronal activity. In mammals and Drosophila, the detection of NaCl induces two different behaviors: low-salt concentrations provide an attractive stimulus, whereas high-salt concentrations are avoided. We identified the gene called serrano (sano) as being expressed in the sensory organs of Drosophila larvae. A transgenic reporter line showed that sano was coexpressed with Gr66a in a subset of gustatory neurons in the terminal organ of third-instar larvae. The disruption of sano gene expression in gustatory neurons led to the specific loss of high-salt concentration avoidance in larvae, whereas the detection of other attractive or aversive substances was unaffected. Moreover, using a cellular marker sensitive to calcium levels, Sano function was shown to be required for neuronal activity in response to high-salt concentrations. In these neurons, the loss of the DEG/ENaC channel PPK19 function also eliminated the cellular response to high-salt concentrations. Our study revealed that PPK19 and Sano are required in the neurons of the larval gustatory organs for the detection of high-salt concentrations.


Assuntos
Comportamento Animal/fisiologia , Neurônios/fisiologia , Cloreto de Sódio , Percepção Gustatória/fisiologia , Paladar/fisiologia , Animais , Cálcio/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Larva/fisiologia
5.
Proc Natl Acad Sci U S A ; 109(1): 249-54, 2012 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-22114190

RESUMO

Animals often use sex pheromones for mate choice and reproduction. As for other signals, the genetic control of the emission and perception of sex pheromones must be tightly coadapted, and yet we still have no worked-out example of how these two aspects interact. Most models suggest that emission and perception rely on separate genetic control. We have identified a Drosophila melanogaster gene, desat1, that is involved in both the emission and the perception of sex pheromones. To explore the mechanism whereby these two aspects of communication interact, we investigated the relationship between the molecular structure, tissue-specific expression, and pheromonal phenotypes of desat1. We characterized the five desat1 transcripts-all of which yielded the same desaturase protein-and constructed transgenes with the different desat1 putative regulatory regions. Each region was used to target reporter transgenes with either (i) the fluorescent GFP marker to reveal desat1 tissue expression, or (ii) the desat1 RNAi sequence to determine the effects of genetic down-regulation on pheromonal phenotypes. We found that desat1 is expressed in a variety of neural and nonneural tissues, most of which are involved in reproductive functions. Our results suggest that distinct desat1 putative regulatory regions independently drive the expression in nonneural and in neural cells, such that the emission and perception of sex pheromones are precisely coordinated in this species.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/enzimologia , Drosophila melanogaster/genética , Ácidos Graxos Dessaturases/genética , Regulação Enzimológica da Expressão Gênica , Sistema Nervoso/enzimologia , Percepção/fisiologia , Atrativos Sexuais/metabolismo , Abdome , Animais , Antenas de Artrópodes/citologia , Antenas de Artrópodes/enzimologia , Encéfalo/citologia , Encéfalo/enzimologia , Regulação para Baixo/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Ácidos Graxos Dessaturases/metabolismo , Feminino , Genes de Insetos/genética , Cabeça , Hidrocarbonetos/metabolismo , Tegumento Comum , Masculino , Sistema Nervoso/citologia , Interferência de RNA , Transgenes/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...